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Smith-Purcell radiationsSPRd, formed by an electron beam traveling above a grating, is a very promising
source of coherent radiation from the THz to the optical regime. We present two theoretical calculations of the
SPR from a two-dimensional bunch of relativistic electrons passing above a grating of finite length. The first
calculation uses the finite-difference time-domain approach with the total-field/scattered-field procedure for
fields incident on the grating. This calculation allows good physical insight into the radiation process and also
allows arbitrary geometries to be treated. The second calculation uses an electric-field integral equation
method. Good agreement is obtained between these two calculations. The results of these theoretical calcula-
tions are then compared with a theoretical formalism based on an infinite-length grating. The latter formalism
allows periodic boundary conditions to be rigorously applied. For gratings with less than,50 periods, a
significant error in the strength of the radiated field is introduced by the infinite-grating approximation. It is
shown that this error disappears asymptotically as the number of periods increases. The Wood-Rayleigh
anomalies, predicted in the infinite-grating approximation, were not seen in our finite-grating calculations. The
SPR resonance condition is the same in all three formalisms. Numerical examples are presented for an
,18 MeV, 50 nC/m, 200µm bunch traveling 0.6 mm above a ten-period echelle grating having a 2.1-mm
periodicity.
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I. INTRODUCTION

Smith-Purcell radiationsSPRd f1g is typically formed by
an electron bunch traveling at a velocityvx and heightbmin

above a periodic grating, as shown in Fig. 1. A theoretical
analysis of SPR was derived by Toraldo Di Franciaf2g in
which the electromagneticsEMd radiation, generalized as
Čerenkov radiation, is caused by diffraction of evanescent
waves from the grating. These evanescent waves are gener-
ated by a charge traveling in free space. Integral equation
methods are used to rigorously solve a wide variety of EM
problems in the frequency domain. The rigorous solution by
van den Berg of the SPR emitted by a linef3g or a pointf4g
charge moving parallel to an infinitely long grating is ob-
tained by solving an integral equation having a periodic
Green’s function. Based on the evanescent-wave approach
by Toraldo Di Francia and the exact integral method by van
den Berg, Haeberléet al. calculated the SPR for a point
charge with energies of 1–100 MeVf5g. Transition radiation
is also calculated by using integral equations in various pa-
pers such asf6,7g. An induced surface current model was
developed by Walshet al. for SPR from a strip gratingf8g,
and Brownellet al. generalized it for an arbitrary grating
profile f9g. This model is based on the image-charge approxi-
mation; however, a two-dimensionals2Dd model for arbi-
trary grating profiles has not been published.

In common with all of the above models is the agreement
on the coherence factor from a finite bunch length and the

agreement on the SPR resonance condition. The latter is
given by

nl = Dgsb−1 − sinud, s1d

where thenth radiation order of the SPR wavelength,l, in
the xz plane, is a function of the spatial angleu, the relativ-
istic bunch velocityb=vx/c=s1−g−2d1/2, and the grating pe-
riod Dg, as illustrated in Fig. 1. The diffracted radiated pulse
from the grating is coherent for wavelengths larger than, or
on the order of, the bunch lengthf10g and the number of
periods in the pulse is equal to the number of grating
grooves.

The SPR due to gratings having small number of periods
was studied experimentally by Burdette and Hughesf11g.
The radiation bandwidth from these gratings was found to be
dependent on the number of grating grooves. A comparison
of the radiated energy to theoretical models has been done in
many recent SPR experiments having various grating densi-
ties and lengths. A good agreement for the relative depen-
dence on the bunch height above the grating was obtained. A
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FIG. 1. The SPR scheme. An electron bunch is traveling at an

axial velocityvx above an echelle grating of periodDg.
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comparison of the absolute energy at various observation
angles with the theoretical prediction is of great interest.
Some data have been obtained, but the measurement is very
difficult and results are limitedf12–15g.

The radiated energy is proportional to the grating length
L. While in experimental setups the grating length is re-
stricted by the bunch emittance and cross section and by the
size of the output optics inside the vacuum chamber, the
rigorous analytical solution by van den Bergf3,4g assumes
an infinitely long grating. Thus, the measured radiated en-
ergy may deviate with respect to theoretical predictions
based on van den Berg’s model, and therefore, rigorous mod-
els taking into account a finite grating length are essential for
calculating the output of practical SPR experiments.

Under van den Berg’s infinitely long grating assumption
the radiated energy per groove equals the work done on the
bunch along a groove length. Operating a SPR experiment in
the van den Berg regime would require thatNg*1000 to
provide a,10% accuracy, whereNg is the number of grating
grooves. This requirement could be qualitatively understood
by comparing the ratio of a periodic Green’s function which
is based on a summation over an infinite number of grooves
and a Green’s function truncated atNg f16g. This issue is
discussed in detail in Sec. IV of this paper.

Grating and bunch parameters in a few SPR experiments
are presented in Table I. In this table, only the grating in Ref.
f15g fulfills this requirement. Thus, a model taking into ac-
count a finite grating length is necessary for most experi-
ments to accurately predict the radiated intensity.

In this paper, we report the first calculation of SPR using
a finite-difference time-domainsFDTDd formalism. The
FDTD method is a powerful tool for calculating the EM
fields for a wide range of applications such as antennas,
high-speed electronic circuits, periodic and photonic band-
gap structures, and optical resonatorsf17g. An analysis of
Čerenkov radiation in photonic crystals was confirmed by
FDTD simulation using a pointlike current densityf18g.

The diffraction of short pulses from a finite-size object
could be applied to SPR setups due to the broad spectrum
diffracted by the incident free-space bunch wake. Thus, the
physics of the diffracted fields by the finite grating length is
taken into account in detail. The FDTD technique is easily
adaptable to arbitrary grating geometries and can be used to
optimize the SPR and estimate the bunch lengthf19,20g. In
addition, it provides an intuitive understanding of the SPR
physics by studying its temporal behavior.

The objectives of this paper are tosad obtain a time do-
main sFDTDd model for calculating the SPR emitted from a
finite length grating by a 2D bunch,sbd obtain a frequency-

domain electric-field integral equationsEFIEd model capable
of sid benchmarking the time-domain results for a finite
length grating andsii d benchmarking van den Berg’s model
f3g for the infinitely long grating assumption, andscd deter-
mine the asymptotic convergence of the radiated energy per
groove by an extended length grating to van den Berg’s so-
lution.

II. FDTD FORMULATION

An FDTD formulation is presented in order to study the
temporal behavior of the SPR. In the 2D case shown in Fig.
1, an electron bunch infinite in they direction is traveling at
an average heightbmin=b−h and velocityx̂vx above a grat-
ing, whereh is the groove height. The bunch free-space eva-
nescent wavesswake fieldsd are TEy polarizedf2g; thus, the
incident components obtained by the Lorentz transform of its
electrostatic field areHy

inc, Ez
inc, andEx

inc.
Central differencing of the TEy Maxwell equations using

Yee’s algorithmf21g results swith minor modificationsd in
the FDTD equationsf17g

Hyu j+1/2,k+1/2
n+1/2 = Hyu j+1/2,k+1/2

n−1/2 −
Dt

m0Dz
sExu j+1,k+1/2

n − Exu j ,k+1/2
n d

+
Dt

m0Dx
sEzu j+1/2,k+1

n − Ezu j+1/2,k
n d, s2ad

Ezu j+1/2,k
n+1 = Ezu j+1/2,k

n +
Dt

e0Dx
sHyu j+1/2,k+1/2

n+1/2 − Hyu j+1/2,k−1/2
n+1/2 d,

s2bd

Exu j ,k+1/2
n+1 = Exu j ,k+1/2

n −
Dt

e0Dz
sHyu j+1/2,k+1/2

n+1/2 − Hyu j−1/2,k+1/2
n+1/2 d,

s2cd

wherem0 ande0 are the free-space permeability and permi-
tivity, respectively. The subscriptsk and j are the spatial
indices in thex and z coordinates, respectively, and the su-
perscriptn is the temporal index. The spatial resolution in the
x and z coordinates is determined byDx and Dz where x
=kDx and z= jDz. Similarly t=nDt whereDt determines the
time step. To ensure a stable solution the FDTD stability
factor j2=scDtd2sDx

−2+Dz
−2d should be,1.

In order to calculate the diffracted fields due to the 2D
bunch, we assumed that the energy lost by the charge is
negligible compared to the charge initial energy, and thus a
particle-in-cell computation taking into account trajectory
changes is not required. This assumption can be checked at
the end of the calculation by comparing the radiated energy
to the initial electron bunch energy. The ratio is found to be
negligible in all cases of interest. Therefore, we took advan-
tage of the fact that the bunch wake could be represented as
a set of evanescent plane wavesf2g and used the total-field/
scattered-fieldsTF/SFd techniquef17g to simulate the free-
space wake as the source fields incident on the grating,

TABLE I. Grating and bunch parameters in few Smith-Purcell
experiments.

Experiment Lsmmd Ng bminsmmd g

Mainz Microtron f15g 25 30000 0.1 1674

RRI, Kyoto f12g 120 60 2.5 295

MIT f20g 100 47 0.5 30

Frascati FELf13g 100 40 1 4.52
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Eincsx,z,td =
qg

2pe0
E

x0

E
z0

ẑsz− z0d + x̂sx − x0 − vxtd
sz− z0d2 + g2sx − x0 − vxtd2

3fsx0,z0ddz0dx0, s3ad

H incsx,z,td =
qgvx

2p
E

x0

E
z0

− ŷsz− z0d
sz− z0d2 + g2sx − x0 − vxtd2

3fsx0,z0ddz0dx0, s3bd

whereq is the total bunch charge per meter andx0 and z0
denote the location of the electrons forming the bunch att
=0. The bunch profile is determined by its distribution func-
tion, fsx0,z0d. Throughout this paper we assumed a longitu-
dinal Gaussian distribution function having a full width at
half maximumsFWHMd of sx and ad function at the bunch
height in the transverse direction. The FDTD minimum reso-
lution was determined byDx=Dz=sx/10 in order to support
the generation of coherent radiation at wavelengthslùsx.

A setup of the FDTD boundary conditions including the
TF/SF box is shown in Fig. 2. The scattering object, which is
the grating in the case of SPR, is surrounded by the TF/SF
box swe found that a margin of four cells was sufficientd. At
each time step the TF/SF box boundaries are updated by the
incident fields on its edges such that only the scattered fields
escape it. The reader is referred to Ref.f17g for a detailed
explanation of implementing this method. The initial bunch
position should be much larger thanb, thus, far enough from
the grating in order to minimize the initial fields incident on
the grating with respect to those when the bunch is above the
gratingsi.e., reduce the initial noise due to the finite running
timed. In our simulations an initial distance of,25b was
used.

The grating was assumed to be a perfectly conducting
metal with the tangential electric componentEi=0 on its
edges. The grating profile was approximated by its best fit on
the rectangular mesh. A perfectly matched layersPMLd f22g
was used to absorb the wave propagating outside of the com-
putation region, as shown in Fig. 2.

At each time step,t8=nDt, the fields on a conversion con-
tour, Lasr 8d, are stored, wherer 8= x̂x8+ ẑz8. This contour is
located outside of the TF/SF box, as shown in Fig. 2, and is
used to calculate the far-field data. After the simulation ends
sand the bunch is sufficiently past the grating such that the
residual fields inside the computation space are negligibled, a
near- to far-field transformationf23g was used in order to
calculate the fields at each observation pointr = x̂x+ ẑz and
time t,

H farsr ,td =
1

2pÎ2r
E

La

dl8E
t8=−`

t8=t−P/c ]t8fn̂L 3 Esr 8,t8dg/Z0 + ]t8fn̂L 3 Hsr 8,t8dg 3 r̂

Îcst − t8d − P
dt8 ; ŷHy

far, s4d

whereP=fsx−x8d2+sz−z8d2g1/2, n̂L is a unit vector normal to
the conversion contour and coming out of it, andZ0
=sm0/e0d1/2 is the free-space impedance. A Fourier transform
to Hy

far was applied in order to find the spectral content at
each observation angle and calculate the wavelength and ra-
diated energy at thenth order.

III. EFIE FORMULATION

A. Finite-length grating

Assuming anejvt dependence, the formulation describing
the scattered TEy-polarized fields from a general 2D per-
fectly conducting geometry is given by the electric-field in-
tegral equation solved along the perimeter of the scatterer,
C f24g,

Ei
incsr ,vd

= j
Z0

k HcosaE
C

JCsr 8,vdcosa8f]x
2 + k2gGsr − r 8ddc8

+ cosaE
C

JCsr 8,vdsina8]xzGsr − r 8ddc8

+ sinaE
C

JCsr 8,vdsina8f]z
2 + k2gGsr − r 8ddc8

+ sinaE
C

JCsr 8,vdcosa8]xzGsr − r 8ddc8J , s5d

where the observation and source points on the scatterer are

FIG. 2. FDTD setup of the boundary conditions. Total of inci-
dent and reflected fields are inside the total-field/scattered-fieldsTF/
SFd box that contains the grating. The conversion contour for stor-
ing the data of the scattered near fields is located around the TF/SF
box. The computation area is bounded by a perfectly matched layer
sPMLd f17g.

TIME- AND FREQUENCY-DOMAIN MODELS FOR SMITH-… PHYSICAL REVIEW E 71, 016501s2005d

016501-3



r and r 8, respectively, the angles tangent to these points are
a anda8, respectively, and the 2D free-space Green’s func-
tion is Gsr −r 8d=s1/4jdH0

s2dskur −r 8ud. At each angular fre-
quencyv=kc, the tangential incident field at the observation
point is given by the Fourier transform of Eq.s3ad for a
bunch traveling above the grating,

Ei
incsr ,vd =

q

2e0bc
esk/bgdz−jsk/bdxS jcosa

g
− sinaDFskd,

s6d

where the bunch form factor Fskd
=ex0

ez0
e−sk/bgdz0+jsk/bdx0fsx0,z0ddz0dx0 affects the coupling of

the wake to the grating and produces the cutoff frequency
due to the bunch distribution function.

The unknown Fourier harmonic of the induced surface
current,JCsr 8 ,vd, in Eq. s5d was solved by dividing the grat-
ing surface intoN straight segments ofDn length and assum-
ing a piecewise constant current in each one,

JCsr ,vd < o
n=1

N

angnsr d, s7d

wheregnsr d=1 at thenth segment and zero out of it. Thus,
Eq. s5d was approximated by a set ofN linear equations
fVmg=fZmngfIng, whereVm is the incident field given by Eq.
s6d at the center of themth observation segment andIn=an.
The matrix diagonal terms, which are related to the singular-
ity of the Hankel function, are given by the closed formf24g

Znn =
Z0kDn

8
H1 −

j

p
F2 lnS1.781kDn

4
D − 1 +

16

skDnd2GJ ,

s8d

and the other terms are calculated explicitly.
The far-field vector potential is found by the Hankel func-

tion approximation for a large argumentr @ r 8, namely,

Asr,u,vd . − j
m0

4
Î 2j

pkr
e−jkrE

C

JCsr 8,vdfx̂ cosa8

+ ẑsina8gejksx8sin u+z8cosuddc8, s9d

and the magnetic component of the far field isf24g

Hysr,u,vd . − j
k

m0
sAzsinu − Axcosud. s10d

Equationss5d–s10d were computed for all frequencies up
to v=2pc/sx where the bunch form factor is very small.
The power spectrum is given by the contribution of these
frequencies at the observation angles −p /2,u,p /2,

Pssu,vd = Z0r uHysr,u,vdu2, s11d

and the angular distribution of the average radiated energy
per groove per meter is given by Parseval’s theorem,

EAVsud =
1

Ngp
E

0

`

Pssv,uddv, s12d

whereNg is the number of grating periods. The integration
range in Eq.s12d could be varied in order to calculate the
energy in a specific range of frequencies for each observation
angle, in order to obtain the contribution from a given SPR
order, such as 0.5vn,v,1.5vn, where vn=2pnc/Dgsb−1

−sinud.

B. Periodic solution

As a step to validate the EFIE model for the finite-length
grating, we have rederived Eqs.s5d–s12d for the special case
of an infinitely long periodic structure. The results of this
section are used in order to benchmark them to van den
Berg’s modelf3g.

In an infinitely long periodic grating, the surface current
JCsr ,vd takes the formJCsx+pDg,z,vd=JCsx,z,vde−jkxpDg,
wherekx=k/b is the wave number in thex̂ direction due to
the bunch traveling at speedvx=bc above the grating. Thus,
the periodic EFIE solved along a single grating periodDg
will have the formf16g

Ei
incsr ,vd

= j
Z0

k HcosaE
Dg

JCsr 8,vdcosa8f]x
2 + k2gGpsr − r 8ddc8

+ cosaE
Dg

JCsr 8,vdsina8]xzGpsr − r 8ddc8

+ sinaE
Dg

JCsr 8,vdsina8f]z
2 + k2gGpsr − r 8ddc8

+ sinaE
Dg

JCsr 8,vdcosa8]xzGpsr − r 8ddc8J , s13d

where the 2D periodic Green’s function,Gpsr −r 8d, replacing
the free-space Green’s function in Eq.s5d, is

Gpsr − r 8d

=
1

4j
o

p=−`

`

H0
s2d
„kÎsx − x8 − pDgd2 + sz− z8d2

…e−jkxpDg.

s14d

The periodic surface current in Eq.s13d is found similarly,
as described in the previous subsection, by dividing the
single-period integration into linear segments and approxi-
mating the current as a sum of piecewise constant functions.
Due to the slow convergence of the periodic Hankel func-
tion, we have used the following procedure to accelerate its
evaluationf16,25g:
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1

4j
o

p=−`

`

H0
s2d
„kÎsx − x8 − pDgd2 + sz− z8d2

…e−jkxpDg

=
1

4j
H0

s2d
„kÎsx − x8d2 + sz− z8d2

… +
e−jksx−x8d

p
E

0

` expf− ksDg + x − x8du2 − jsk − kxdDggcosfksz− z8duÎu2 + 2jg

h1 − expf− kDgu
2 − jsk − kxdDggjÎu2 + 2j

du

+
ejksx−x8d

p
E

0

` expf− ksDg − x + x8du2 − jsk + kxdDggcosfksz− z8duÎu2 + 2jg

h1 − expf− kDgu
2 − jsk + kxdDggjÎu2 + 2j

du, s15d

where the right-hand-side first term is related top=0 and the
other two are related to the summation ofp=−` ,… ,−1, and
p=1,… ,`, respectively. The advantage of this procedure is
that the singularity in the self-term argument is evaluated as
in Eq. s8d, and the partial derivatives in Eq.s13d can be
applied analytically on the second and third terms of Eq.
s15d.

After the periodic surface current is found, the periodic
vector potential is found byf16g

Asx,z,vd = m0E
Dg

JCsr 8,vdfx̂ cosa8

+ ẑsina8gGpsr − r 8ddc8. s16d

Applying the Poisson sum transformation over the periodic
Green’s functionf16g, we obtain

Gpsr − r 8d =
1

2jDg
o

n=−`

` Fe−jkxnsx−x8d−jkznuz−z8u

kzn
G , s17d

wherekxn=kx+2pn/Dg andkzn=sÎk2−kxn
2 d* are the axial and

transverse periodic wave numbers, respectively. Thesd* de-
notes a complex conjugate value; thus, Reskzndù0 and
Imskzndø0. Nonevanescent radiation propagating from the
grating will occur for real values ofkzn. These harmonics
correspond to the propagating Floquet harmonics which are
the spectral grating orders.

Thenth SPR order is obtained from Eqs.s16d ands17d for
z.z8,

ŷHynsx,z,vd =
1

m0
= 3 A

=
e−jkxnx−jkznz

2Dg
E

Dg

JCsr 8,vdf− kzncosa8

+ kxnsina8g
ejkxnx8+jkznz8

kzn
dc8. s18d

It is noted that dividing this equation by the Floquet wave
number dependencee−jkxnx−jkznz results in an equation identi-
cal to Eq. s29d in f3g. The nth-order radiated energy per
groove per meter is found from Eq.s18d as

Esud =
2

e0
uHynsvdu2

n cos2 u

sb−1 − sinud2 , s19d

whereuHynsvdu is independent of thesx,zd coordinates andv
andu are related by the resonance condition in Eq.s1d.

IV. NUMERICAL EXAMPLE

A numerical example of a finite length echelle grating by
the FDTD and EFIE models is presented in the following
section. The bunch and grating parameters are as listed in
Table II, unless specified otherwise.

A. FDTD solution

The resulting SPR for the setup illustrated in Fig. 2 is
presented in Fig. 3 by contours ofHy. Only positive contours
are presented for clarity. These contours form crescent-
shaped wave fronts. The 0.5-kA/m contours are located at
the edges of each crescent, and incremental contours of 1.0,
1.5, and 2.0 kA/m are counted towards the interior of each
crescent.

This figure was taken at a time step when the center of the
bunch was atx.25 mm, which is just before the end of the
grating. This plot provides an intuitive understanding of the
SPR mechanism, in which the evanescent waves below the
bunch are being reflected by the periodic structure.

It is seen that the continuation of each crescent towards
large angles,u→90°, is tangent to the location of the bunch.
These crescents end at some angleu<60° where the coher-
ent radiation is low due to the bunch length. The number of
crescents, which corresponds to the number of wave fronts

TABLE II. Smith-Purcell simulation parameters.

Bunch chargeq 50 nC/m

Bunch relativistic factorg 36

Height above the grating,bmin 0.6 mm

Bunch lengthsx 200 µm

Grating periodDg 2.1 mm

Blaze anglea 10 degrees

Number of periods,Ng 10

Grid resolutionDx=Dz 20 µm

Stability j2 0.5
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diffracted from the grating, is equal to the number of
grooves. The wavelengthl is related to the distance between
two adjacent wave fronts at a given angleu. It is noted that
the computation area abovez.2 mm was not required for
the far field transformation, but was presented here for the
intuitive understanding of the SPR fields.

The grating was defined as a perfectly conducting metal
layer which is infinitely thin along thez dimension. In Fig. 3,
electromagnetic radiation is also observed below the grating.
This radiation is generated by the part of the bunch wake
which passes underneath the grating and gets diffracted by
the bottom of the grating. This radiation would not exist in
an experiment with a finite-thickness, single-sided grating.

The far-field radiation at an observation angle ofu=30° is
presented in Fig. 4. A total of ten sinusoidal periods, corre-
sponding to the ten grating periods, are seen in this figure.
The temporal distance of 3.54 ps between two adjacent peaks
corresponds to a wavelength of 1.06 mm. This agrees with
the theoretical wavelength atu=30° which is 1.05 mm.

The fundamental frequency at each observation angle was
computed by finding the frequency in which the Fourier

transform of the far-field data is maximum. The correspond-
ing wavelength versusu is presented in Fig. 5 by the solid
line, where the theoretical value forn=1 is presented by the
dashed line.

B. EFIE solution

A plot of the absolute value of the surface current along
the ten-period grating is presented in Fig. 6. The surface
current is normalized to a unit charge ofq=1 C/m and a
bunch form factor ofFskd=1. The Fourier component is 285
GHz, which is related to SPR peaking atu=30°. The surface
current structure has a 2.1-mm general periodicity, in agree-
ment with the grating period, and an overall envelope which
is large in the first groove and decays towards the last
groove.

The surface current for an infinitely long grating, solved
for the normalization and frequency settings as in Fig. 6, is
presented in Fig. 7 by the solid line. The dashed line is the
equivalent surface current for van den Berg’s solutionfEq.

FIG. 3. A contour plot ofHy by the bunch traveling above the
grating. Only positive contours of 0.5, 1.0, 1.5, and 2.0 kA/m are
presented for clarity to form crescent-shaped wave fronts. The
0.5-kA/m contours are at the crescent edges and the amplitude is
increasing towards the interior of each crescent.

FIG. 4. Far field radiation atu=30°.

FIG. 5. Diffracted wavelength of the first-order vs propagating
angle calculated from the far-field transformationssolid lined com-
pared with the analytic result of Eq.s1d sdashed lined.

FIG. 6. Surface current at spectral frequency of 285 GHz for the
ten-period grating.
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s30d in f3gg. Good agreement is obtained for the reflected
fields calculated from these two solutions. This periodic sur-
face current follows a similar structure per period as the ten-
period solution in Fig. 6; however, it differs in the maximum
amplitude value because it is the infinitely long grating so-
lution, whereas Fig. 6 presents the ten-period solution. In this
figure the surface current along one periods2.1 mmd has four
variations. This agrees with a wavelength of 1.05 mm which
corresponds to the above Fourier component.

A contour plot of the SPR power spectrum for the param-
eters in Table II is presented in Fig. 8. The contour values are
0.5, 1, 2, and 3310−15 W s2 srad md−1. For clarity, the inner
plot shows a zoomed-in section of the dashed box between
0° and 20°. The dashed curves are the firstsn=1d and second
sn=2d orders of the Smith-Purcell resonance in Eq.s1d. It is
seen that the power spectrum is located along these lines,
where most of it is at the first order. The spectral width at
each observation angle isDv /v,1/nNg.

C. Radiated energy

The average first-ordersn=1d radiated energy per groove
per meter by the FDTD and EFIE models is presented in Fig.
9 by the solid and dashed lines, respectively. A good agree-
ment with an error of,10% is obtained between these meth-
ods. The first-order radiated energy per groove per meter by
van den Berg’s model, calculated at observation angle steps
of 1°, is presented by the dash-dotted line.

The periodic solution deviates by a factor of more than 3
from the FDTD and EFIE solutions for the ten-period grat-
ing. Furthermore, the strong variations, related to Wood-
Rayleigh anomaliesf26g, are not seen in the finite-length
solutions.

The effect of a finite-thickness grating is presented by the
dotted line. Here, the average first-order radiated energy per
groove is calculated by the EFIE model for a ten-period
single-sided gratingsflat lower edged having a 10 mm thick-
ness. In Fig. 9 it is seen that a finite thickness grating hardly
affects the SPR for a wide range of angles −45°,u,65°.
However, diffraction radiation from the left and right edges
is observed at ±90°snot shown in this figured.

The convergence of the radiated energy per groove atu
=25° for various extended grating lengthsNg to that of the
infinitely long grating svan den Berg modeld, DE/E=sEAV

−Ed /E, is plotted as circles on a log-linear scale in Fig. 10,
whereE is the energy per groove for the infinitely long grat-
ing. In this figure,DE/E.1 for a 50-groove gratingstotal
length of 105 mmd means it is 100% higher compared to van
den Berg’s solution, whereas it is only 6% higher for a 175-
groove grating. The solid line represents the asymptotic con-
vergence and its slope was found to bee−0.02Ng.

The asymptotic convergence may be understood by the
behavior of the surface current as the number of periods is
increased. The amplitude of the current at theNth groove,
where 1,NøNg, is found to be mainly affected by the cur-
rent from the preceding groovessgrooves 1 toN−1d. For

FIG. 7. Periodic surface current at spectral frequency of 285
GHz. The solid line is the periodic EFIE solution, and the dashed
line is the solution of Eq.s30d in f3g.

FIG. 8. Power spectrum calculated by Eq.s11d. The contour
values are 0.5, 1, 2, and 3310−15 W s2 srad md−1. For clarity, the
inner plot shows a zoomed-in section of the dashed box between 0°
and 20°.

FIG. 9. Average first-order radiated energy per groove calcu-
lated by the FDTD and EFIE methods in solid and dashed lines,
respectively, and the first-order energy per groove for the infinitely
long grating solution in a dash-dotted linesvan den Berg modeld.
The corresponding energy for a ten-period single-sided grating hav-
ing a 10 mm thickness is presented by the dotted line.
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example, using the parameters of Fig. 6, the Fourier har-
monic of the surface current at the first groove has a peak
value of ,1.0 As/m, independent ofNg; the peak value at
the second groove is,0.9 As/m forNgù2, etc. The solu-
tion of the surface current for a large number of periods
sNg.100d follows an envelope where the amplitude ap-
proaches the periodic solution value,,0.27 As/m, towards
the last grooves.

V. DISCUSSION

A theoretical study of SPR by a 2D bunch above a finite-
length grating was presented using two models. In the time-
domain model, a TF/SF approach was used to simulate the
bunch wake. The far-field signal in Fig. 4 follows an enve-
lope which falls by a factor of 2 from the first to the last
period. The same behavior is noted for the surface current at
the same spectral frequency shown in Fig. 6.

The change in the surface current envelope is explained
by the cumulative effects of the diffracted fields in the for-
ward spositive xd direction. The surface current induced on
the first groove, as the bunch passes above it, generates the
first period of the SPR. The forward-directed part of this
radiation induces current on the second groove just as the
bunch is located above the second groovesfor relativistic
velocitiesd, thus changing the amount of radiation from this
groove. This behavior is seen in both the time- and

frequency-domain solutions. For a large number of grooves,
this transient settles to the periodic solution. Figure 7 shows
that assuming an infinite grating length, our periodic EFIE
solution agrees with the van den Berg model for the surface
current.

A good agreement for the radiated energy is obtained be-
tween the FDTD and EFIE models. It is shown that van den
Berg model results in a radiated energy per groove which is
more than a factor of 3 lower than the average radiated en-
ergy per groove from the ten-period grating. This difference
is also seen by comparing the surface current amplitude of
the ten-period and the infinitely long grating in Figs. 6 and 7,
respectively. The cause of this difference is the transient ra-
diation from the initial to the successive grooves in the grat-
ing structure, as explained in the previous paragraph. Ex-
tending the grating length by increasing the number of
grooves resulted in an exponential asymptotic convergence
to the infinitely long solution, as shown in Fig. 10.

The edge effect due to a finite-thickness grating has a
slight contribution to the SPR for angles −45°,u,65°, as
seen in Fig. 10. The left and right 10-mm edges result in
coherent diffraction radiation at angles of ±90°.

The Wood-Rayleigh anomalies, predicted by the van den
Berg model, have not been observed, to the best of our
knowledge, in any SPR experiment. Only a mild structure in
the radiated spectrum is predicted by our finite-length grating
calculation.

It will be interesting to study how the SPR is affected by
a realistic conductivity grating. Based on Ref.f27g, we ex-
pect the same behavior for wavelengths longer than 4mm
and a significant reduction in the radiated energy for wave-
lengths shorter than 1mm.

This paper extends the FDTD applications by computing
the diffraction of the freespace wake by the metallic grating.
It might be convenient for simulating complex grating geom-
etries such as photonic band-gap structuresf28–30g and
could be used, for example, to optimize the maximum energy
at a desired wavelength. Both models are limited by com-
puter resources and required 2–3 days of computation time
on a 2.65 GHz Pentium processor for the above numerical
example.

ACKNOWLEDGMENTS

This research was supported by the U.S. Department of
Energy, Division of High Energy Physics. A.S.K. wishes to
thank Eric A. Forgy and Arthur D. Yaghjian for their helpful
suggestions.

f1g S. J. Smith and E. M. Purcell, Phys. Rev.92, 1069s1953d.
f2g G. Toraldo Di Francia, Nuovo Cimento16, 61 s1960d.
f3g P. M. van den Berg, J. Opt. Soc. Am.63, 689 s1973d.
f4g P. M. van den Berg, J. Opt. Soc. Am.63, 1588s1973d.
f5g O. Haeberlé, P. Rullhusen, J.-M. Salomé, and N. Maene, Phys.

Rev. E 49, 3340s1994d.

f6g Yu. N. Dnestrovskii and D. P. Kostomarov, Sov. Phys. Dokl.
4, 158 s1959d.

f7g Y. Takakura and O. Haeberlé, Phys. Rev. E61, 4441s2000d.
f8g J. Walsh, K. Woods, and S. Yeager, Nucl. Instrum. Methods

Phys. Res. A341, 277 s1994d.
f9g J. H. Brownell, J. Walsh, and G. Doucas, Phys. Rev. E57,

FIG. 10. Convergence of the average energy per groove calcu-
lated by the EFIE to that of the infinitely long gratingsvan den Berg
modeld at an observation angleu=25°. The circles denote the ratio
DE/E and the solid line represents the asymptotic convergence.

KESAR et al. PHYSICAL REVIEW E 71, 016501s2005d

016501-8



1075 s1998d.
f10g K. J. Woods, J. E. Walsh, R. E. Stoner, H. G. Kirk, and R. C.

Fernow, Phys. Rev. Lett.74, 3808s1995d.
f11g E. L. Burdette and G. Hughes, Phys. Rev. A14, 1766s1976d.
f12g Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Naka-

zato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama,
K. Kobayashi, and Y. Fujita, Phys. Rev. E57, 1061s1998d.

f13g G. Doucas, M. F. Kimmitt, A. Doria, G. P. Gallerano, E. Gio-
venale, G. Messina, H. L. Andrews, and J. H. Brownell, Phys.
Rev. ST Accel. Beams5, 072802s2002d.

f14g G. Doucas, M. F. Kimmitt, Th. Kormann, G. Korschinek, and
C. Wallner, Int. J. Infrared Millim. Waves24, 829 s2003d.

f15g G. Kubeet al., Phys. Rev. E65, 056501s2002d.
f16g A. F. Peterson, S. L. Ray, and R. Mittra,Computational Meth-

ods for Electromagnetics, IEEE/OUP Series on Electromag-
netic Wave TheorysIEEE Press, New York, 1999d.

f17g A. Taflove and S. C. Hagness,Computational Electrodynam-
ics, the Finite-Difference Time-Domain Method, 2nd ed.
sArtech House, Norwood, MA, 2000d.

f18g C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos,
Science299, 368 s2003d.

f19g A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, G. Dou-
cas, M. F. Kimmitt, H. L. Andrews, and J. H. Brownell, Nucl.
Instrum. Methods Phys. Res. A483, 263 s2002d.

f20g S. E. Korbly, A. S. Kesar, M. A. Shapiro, and R. J. Temkin, in
Proceedings of the 2003 Particle Accelerated Conference, ed-
ited by J. Chew, P. Lucas, and S. WebbersIEEE, Piscataway,
New Jersey, 2003d, pp. 2536–2538.

f21g K. Yee, IEEE Trans. Antennas Propag.14, 302 s1966d.
f22g J. P. Berenger, J. Comput. Phys.114, 185 s1994d.
f23g S. González García, B. García Olmedo, and R. Gómez Martín,

Microwave Opt. Technol. Lett.27, 427 s2000d.
f24g C. A. Balanis, Advanced Engineering Electromagnetics

sWiley, New York, 1989d.
f25g A. W. Mathis and A. F. Peterson, IEEE Trans. Antennas

Propag.44, 567 s1996d.
f26g Electromagnetic Theory of Grating, edited by R. Petit

sSpringer-Verlag, Berlin, 1980d.
f27g C. Palmer,Diffraction Grating Handbook, 5th ed.sRichardson

Grating Laboratory, Rochester, NY, 2002d.
f28g E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J.

Temkin, J. Appl. Phys.91, 960 s2002d.
f29g S. Yamaguti, Jun-ichi Inoue, O. Haeberlé, and K. Ohtaka,

Phys. Rev. B66, 195202s2002d.
f30g K. Yamamoto, R. Sakakibara, S. Yano, Y. Segawa, Y. Shibata,

K. Ishi, T. Ohsaka, T. Hara, Y. Kondo, H. Miyazaki, F. Hinode,
T. Matsuyama, S. Yamaguti, and K. Ohtaka, Phys. Rev. E69,
045601sRd s2004d.

TIME- AND FREQUENCY-DOMAIN MODELS FOR SMITH-… PHYSICAL REVIEW E 71, 016501s2005d

016501-9


