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Time- and frequency-domain models for Smith-Purcell radiation from a two-dimensional charge
moving above a finite length grating
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Smith-Purcell radiatiofSPR, formed by an electron beam traveling above a grating, is a very promising
source of coherent radiation from the THz to the optical regime. We present two theoretical calculations of the
SPR from a two-dimensional bunch of relativistic electrons passing above a grating of finite length. The first
calculation uses the finite-difference time-domain approach with the total-field/scattered-field procedure for
fields incident on the grating. This calculation allows good physical insight into the radiation process and also
allows arbitrary geometries to be treated. The second calculation uses an electric-field integral equation
method. Good agreement is obtained between these two calculations. The results of these theoretical calcula-
tions are then compared with a theoretical formalism based on an infinite-length grating. The latter formalism
allows periodic boundary conditions to be rigorously applied. For gratings with less~tB&nperiods, a
significant error in the strength of the radiated field is introduced by the infinite-grating approximation. It is
shown that this error disappears asymptotically as the number of periods increases. The Wood-Rayleigh
anomalies, predicted in the infinite-grating approximation, were not seen in our finite-grating calculations. The
SPR resonance condition is the same in all three formalisms. Numerical examples are presented for an
~18 MeV, 50 nC/m, 20um bunch traveling 0.6 mm above a ten-period echelle grating having a 2.1-mm

periodicity.
DOI: 10.1103/PhysRevE.71.016501 PACS nuni®er41.60—m, 02.70.Bf, 42.25.Fx, 42.79.Dj
[. INTRODUCTION agreement on the SPR resonance condition. The latter is

given by
Smith-Purcell radiatiofSPR [1] is typically formed by : 1
an electron bunch traveling at a velocity and height,, N\ =Dgy(5" - sin o), 1)

above a periodic grating, as shown in Fig. 1. A theoreticalyhere thenth radiation order of the SPR wavelengi),in
analysis of SPR was derived by Toraldo Di Franf2d in  thexz plane, is a function of the spatial anglethe relativ-
which the electromagneti¢cEM) radiation, generalized as istic bunch velocity8=v,/c=(1-y?)2 and the grating pe-
Cerenkov radiation, is caused by diffraction of evanescentiod Dy, as illustrated in Fig. 1. The diffracted radiated pulse
waves from the grating. These evanescent waves are gengfom the grating is coherent for wavelengths larger than, or
ated by a charge traveling in free space. Integral equation the order of, the bunch lengfi0] and the number of
methods are used to rigorously solve a wide variety of EMperiods in the pulse is equal to the number of grating
problems in the frequency domain. The rigorous solution bygrooves.
van den Berg of the SPR emitted by a g4 or a point[4] The SPR due to gratings having small number of periods
charge moving parallel to an infinitely long grating is ob- was studied experimentally by Burdette and Hughis.
tained by solving an integral equation having a periodicThe radiation bandwidth from these gratings was found to be
Green’s function. Based on the evanescent-wave approagfependent on the number of grating grooves. A comparison
by Toraldo Di Francia and the exact integral method by varof the radiated energy to theoretical models has been done in
den Berg, Haeberl@t al. calculated the SPR for a point many recent SPR experiments having various grating densi-
charge with energies of 1-100 Md¥]. Transition radiation ties and lengths. A good agreement for the relative depen-

is also calculated by using integral equations in various padence on the bunch height above the grating was obtained. A
pers such a$6,7]. An induced surface current model was

developed by Walslet al. for SPR from a strip grating8],
and Brownellet al. generalized it for an arbitrary grating
profile[9]. This model is based on the image-charge approxi-
mation; however, a two-dimension&D) model for arbi-
trary grating profiles has not been published.

In common with all of the above models is the agreement
on the coherence factor from a finite bunch length and the

Periodic grating
*Corresponding author. Electronic address: a_kesar@mit.edu
"Present address: Physics Department, Indiana University, Bloom- FIG. 1. The SPR scheme. An electron bunch is traveling at an
ington, IN 47405, USA. axial velocityv, above an echelle grating of perid},.
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TABLE I. Grating and bunch parameters in few Smith-Purcell domain electric-field integral equatiggFIE) model capable

experiments. of (i) benchmarking the time-domain results for a finite
_ length grating andii) benchmarking van den Berg’s model
Experiment L(mm) Ng Brmin(mMm) Y [3] for the infinitely long grating assumption, arid deter-

mine the asymptotic convergence of the radiated energy per

Mainz Microtron[15] 25 30000 0.1 1674 . ;
groove by an extended length grating to van den Berg's so-

RRI, Kyoto[12] 120 60 25 295  |.tion.

MIT [20] 100 47 0.5 30

Frascati FEL[13] 100 40 1 4.52

Il. FDTD FORMULATION

comparison of the absolute energy at various observation An FDTD formulation is presented in order to study the
angles with the theoretical prediction is of great interesttemporal behavior of the SPR. In the 2D case shown in Fig.
Some data have been obtained, but the measurement is veryan electron bunch infinite in thedirection is traveling at
difficult and results are limite@12-15. an average heighi,;,=b—h and velocityXv, above a grat-

The radiated energy is proportional to the grating lengthing, whereh is the groove height. The bunch free-space eva-
L. While in experimental setups the grating length is re-nescent waveéwake field$ are TE, polarized[2]; thus, the
stricted by the bunch emittance and cross section and by thacident components obtained by the Lorentz transform of its
size of the output optics inside the vacuum chamber, thelectrostatic field are{';c, E), andEJ“.
rigorous analytical solution by van den Belig,4] assumes Central differencing of the TEMaxwell equations using
an infinitely long grating. Thus, the measured radiated enyee’s algorithm[21] results (with minor modification$ in
ergy may deviate with respect to theoretical predictiongshe FDTD equation§17]
based on van den Berg’s model, and therefore, rigorous mod-
els taking into account a finite grating length are essential for A,
calculating the output of practical SPR experiments. Hyl ake1ro= Hyl s iakear = _A(Ex|,-n+1,k+1/z‘ Edlkrr2)

Under van den Berg’s infinitely long grating assumption Koz
the radiated energy per groove equals the work done on the t n n
bunch along a groove length. Operating a SPR experiment in * E(Ez|j+1/2k+l_ Edlferr2p (28
the van den Berg regime would require tid$=1000 to
provide a~10% accuracy, wher, is the number of grating
grooves. This requirement could be qualitatively understood EJml =g ¢ By CH M2
by comparing the ratio of a periodic Green’s function which 2prlizkT A2k g A YLk L2 Y2k 12
is based on a summation over an infinite number of grooves

and a Green’s function truncated M [16]. This issue is (2b)
discussed in detail in Sec. IV of this paper.
Grating and bunch parameters in a few SPR experiments L A,
are presented in Table I. In this table, only the grating in Ref. Ex|?,+k+1/2= Ex|?,k+1/2_ %_A(Hy|?::Ll//22,k+1/2_ Hy|?f11//22,k+1/2 :
z

[15] fulfills this requirement. Thus, a model taking into ac-
count a finite grating length is necessary for most experi- (20)
ments to accurately predict the radiated intensity.

In this paper, we report the first calculation of SPR usingwhere o and ¢, are the free-space permeability and permi-
a finite-difference time-domainfFDTD) formalism. The tivity, respectively. The subscripts and j are the spatial
FDTD method is a powerful tool for calculating the EM indices in thex andz coordinates, respectively, and the su-
fields for a wide range of applications such as antennagerscriptnis the temporal index. The spatial resolution in the
high-speed electronic circuits, periodic and photonic bandx and z coordinates is determined by, and A, where x
gap structures, and optical resonatpt3]. An analysis of =kA, andz=jA,. Similarly t=nA; where A, determines the
Cerenkov radiation in photonic crystals was confirmed bytime step. To ensure a stable solution the FDTD stability
FDTD simulation using a pointlike current densft8]. factor £=(cA)3(A2+A,?) should be<1.

The diffraction of short pulses from a finite-size object In order to calculate the diffracted fields due to the 2D
could be applied to SPR setups due to the broad spectrubrunch, we assumed that the energy lost by the charge is
diffracted by the incident free-space bunch wake. Thus, th@egligible compared to the charge initial energy, and thus a
physics of the diffracted fields by the finite grating length is particle-in-cell computation taking into account trajectory
taken into account in detail. The FDTD technique is easilychanges is not required. This assumption can be checked at
adaptable to arbitrary grating geometries and can be used tbe end of the calculation by comparing the radiated energy
optimize the SPR and estimate the bunch lerid®20. In  to the initial electron bunch energy. The ratio is found to be
addition, it provides an intuitive understanding of the SPRnegligible in all cases of interest. Therefore, we took advan-
physics by studying its temporal behavior. tage of the fact that the bunch wake could be represented as

The objectives of this paper are (a) obtain a time do- a set of evanescent plane way&$and used the total-field/
main (FDTD) model for calculating the SPR emitted from a scattered-field TF/SP technique[17] to simulate the free-
finite length grating by a 2D bunclib) obtain a frequency- space wake as the source fields incident on the grating,
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inc 2z~ 7o) + X(x = Xg = Uyt) PML
E (X, Z,t) - ZWEOL f (Z_ 20)2 + ,yZ(X - Xo— Uxt)2 E @_’vx
Xf(XO Zy dZOdXO, (3&) x Conversion contour
[ TE/SFbox = = = = = = = = = = 1
inc _ 9vox ~Y(z- Z) E /‘/\/‘ :
H™x2.0) = f J (2= 20)% + YA(X = Xg — vy1)? I :
X F(Xo,20)dZo0o, (3b)

whereq is the total bunch charge per meter aqdand z,
denote the location of the electrons forming the bunch at  FiG. 2. FDTD setup of the boundary conditions. Total of inci-
=0. The bunch profile is determined by its distribution func-dent and reflected fields are inside the total-field/scatteredfi@lt
tion, f(xp,2y). Throughout this paper we assumed a longitu-Sp box that contains the grating. The conversion contour for stor-
dinal Gaussian distribution function having a full width at ing the data of the scattered near fields is located around the TF/SF
half maximum(FWHM) of o, and aé function at the bunch box. The computation area is bounded by a perfectly matched layer
height in the transverse direction. The FDTD minimum reso{PML) [17].
lution was determined by,=A,=0,/10 in order to support
the generation of coherent radiation at wavelengtkso,. The grating was assumed to be a perfectly conducting
A setup of the FDTD boundary conditions including the metal with the tangential electric componeBt=0 on its
TF/SF box is shown in Fig. 2. The scattering object, which isedges. The grating profile was approximated by its best fit on
the grating in the case of SPR, is surrounded by the TF/SEhe rectangular mesh. A perfectly matched lagfeiL) [22]
box (we found that a margin of four cells was sufficiefit ~ was used to absorb the wave propagating outside of the com-
each time step the TF/SF box boundaries are updated by thptation region, as shown in Fig. 2.
incident fields on its edges such that only the scattered fields At each time stept =nA,, the fields on a conversion con-
escape it. The reader is referred to Réf7] for a detailed tour, L,(r’), are stored, where’ =%x’ +zz'. This contour is
explanation of implementing this method. The initial bunchlocated outside of the TF/SF box, as shown in Fig. 2, and is
position should be much larger thanthus, far enough from used to calculate the far-field data. After the simulation ends
the grating in order to minimize the initial fields incident on (and the bunch is sufficiently past the grating such that the
the grating with respect to those when the bunch is above thesidual fields inside the computation space are negligiale
grating(i.e., reduce the initial noise due to the finite running near- to far-field transformatiof23] was used in order to
time). In our simulations an initial distance 6f250 was calculate the fields at each observation paistx+2z and
used. timet,

f ft’ =t-Pic g [N X E(r/, t")[/Zg+ du[D X H(r',t")] X T

d/EAHfar’ 4
Ve(t-t') - P Y @

H"(r t) =
277\'2r

whereP=[(x-x")?+(z-2')?]"2, A is a unit vector normal to EM(r, )

the conversion contour and coming out of it, aZg

=(uo/ €)Y? is the free-space impedance. A Fourier transform :jé COSaf Je(r! w)cosa' [+ K2IG(r - r')dc’
to H;ar was applied in order to find the spectral content at K c ' )

each observation angle and calculate the wavelength and ra-

diated energy at thath order. " COSaJ Je(r', w)sin &’ a,G(r - r")dc’
C

Ill. EFIE FORMULATION
- _ +sinaf Jo(r’, w)sina'[#2 + K?]G(r —r")dc’
A. Finite-length grating c
Assuming are’®! dependence, the formulation describing

the scattered TfEpolarized fields from a general 2D per- +sin af Jc(r', w)cosa’ d,,G(r —r')dc’ ¢, ©)
fectly conducting geometry is given by the electric-field in- c
tegral equation solved along the perimeter of the scatterer,
C [24], where the observation and source points on the scatterer are
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r andr’, respectively, the angles tangent to these points are
a anda’, respectively, and the 2D free-space Green’s func-

tion is G(r—r’):(1/4j)HE)2)(k|r—r’|). At each angular fre-

quencyw=Kc, the tangential incident field at the observation

point is given by the Fourier transform of E¢Ba) for a
bunch traveling above the grating,

EM(r, o) = ewwz—i(wmx(@ ~sin a) F(k),
Y

260,30

(6)

where the bunch form factor F(k)
= [ ) 2,8 P21 MEXof (x5, 75) dzodX affects the coupling of

the wake to the grating and produces the cutoff frequency

due to the bunch distribution function.

The unknown Fourier harmonic of the induced surface

current,Je(r', w), in Eq.(5) was solved by dividing the grat-
ing surface intd\ straight segments df,, length and assum-
ing a piecewise constant current in each one,

N
Jo(r, @) = 2 agn(r), 7
n=1

whereg,(r)=1 at thenth segment and zero out of it. Thus,
Eq. (5) was approximated by a set &f linear equations
[Vl =[Zmnllln], whereV,, is the incident field given by Eqg.
(6) at the center of thenth observation segment amgk=a,,.

The matrix diagonal terms, which are related to the singular-

ity of the Hankel function, are given by the closed for2]
{1—l[2In< )—1+ H
T

(8)
and the other terms are calculated explicitly.
The far-field vector potential is found by the Hankel func-
tion approximation for a large argumentr’, namely,

2] A
A(r,6,w) = —jﬂ) \/ —Je‘“"f Jo(r’, w)[X cosa’
4 7Tkr C

_ ZokAn

, 1.78KA,
nn~— 8

4

16
(kAp)?

+%sin a/]ejk(x’sin 6+2'cos ﬂ)dc/ ’ (9)
and the magnetic component of the far field 24|
k .
Hy(r,0,w) = - j—(Asin 6 - A,cosb). (10
Mo

Equations(5)—(10) were computed for all frequencies up
to w=2wc/ o, where the bunch form factor is very small.

PHYSICAL REVIEW E 71, 016501(2009

1]“
m™Jo

Eav(0) = —
9

N PS(w! a)dwl

12

where N, is the number of grating periods. The integration
range in Eq.(12) could be varied in order to calculate the
energy in a specific range of frequencies for each observation
angle, in order to obtain the contribution from a given SPR
order, such as 0dy, < w<1.5w, where <un=27-rnc/Dg(,8‘1
-sin ).

B. Periodic solution

As a step to validate the EFIE model for the finite-length
grating, we have rederived Eq$)—(12) for the special case
of an infinitely long periodic structure. The results of this
section are used in order to benchmark them to van den
Berg’s model[3].

In an infinitely long periodic grating, the surface current
Je(r,w) takes the formle(x+pDy,z, w)=Jc(X,Z, w)e PPg,
wherek,=k/ 3 is the wave number in the direction due to
the bunch traveling at speeg=c above the grating. Thus,
the periodic EFIE solved along a single grating periog
will have the form[16]

EM(r, o)

Z
=j?0{005af Je(r', w)cosa’ [+ K]G,(r —r')dc’
Dy

+ COSaf Jo(r’, w)sina’ 3, Gy(r —r")dc’
D
¢]

+sin aJ Je(r', w)sina'[ 5 + K2]Gy(r —r")dc’
D

}, (13

where the 2D periodic Green’s functioB,(r —r’), replacing
the free-space Green’s function in H§), is

+sin af Jo(r’, w)cosa’ d,,Gy(r —r')dc’
D
¢}

Gp(r—r")

1 < '
= 2 > HP(K\(x—X = pDy)>+ (z—Z')?)e PPy,
p=-c

(14)

The power spectrum is given by the contribution of these The periodic surface current in E4.3) is found similarly,

frequencies at the observation angles/2< §</2,

Po(6,0) = Zgr [H(r, 6, 0) [, (1)

as described in the previous subsection, by dividing the
single-period integration into linear segments and approxi-
mating the current as a sum of piecewise constant functions.
Due to the slow convergence of the periodic Hankel func-

and the angular distribution of the average radiated energiion, we have used the following procedure to accelerate its

per groove per meter is given by Parseval's theorem,

evaluation[16,25:
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1 < .
2 2 HE(kix=x' = pDy?+ (2-2))e P
p:—DO
- iH(z)(k\,'(X_ X2+ (z-2)%) + e_j"("')")Joc exf - k(Dg+ x— XY= j(k- ko) Dglcogk(z—z")uvu®+ zj]du
4j ° 7 Jo {1 - ex— kDgu? - j (k= k) D2 + 2]
.\ ejk(x‘x')f“ exf— k(Dg = x+X)u? = j(k + k) Dglcogk(z - 2 )uyu? + 2j]du 15
7 Jo {1 - exi— kDgu? — j (k + k) Dg U + 2] ’
[
where the right-hand-side first term is relate¢pto0 and the 2 , N cog ¢
other two are related to the summationpaf—, ...,-1, and E(0) = —|Hy(o)|* —F———. (19
€ (B *—sinb)

p=1,...,%, respectively. The advantage of this procedure is

that the singularity in the self-term argument is evaluated aghere|H, ()| is independent of théx,z) coordinates and
in Eq. (8), and the partial derivatives in Eq13) can be and®@ are related by the resonance condition in Eg.
applied analytically on the second and third terms of Eq.

(15).
After the periodic surface current is found, the periodic 'V NUMERICAL EXAMPLE
vector potential is found bj/16] A numerical example of a finite length echelle grating by

the FDTD and EFIE models is presented in the following

) R ) section. The bunch and grating parameters are as listed in
A(X,z,0) = uo . Jc(r’, w)[X cosa Table 11, unless specified otherwise.
¢}
+zsina']Gy(r —r’)dc’. (16) A. FDTD solution

Applying the Poisson sum transformation over the periodic The resylting SPR for the setup iIIustraFefd in Fig. 2 is
Green'’s functior{ 16], we obtain presented in Fig. 3 by contours Hf. Only positive contours

are presented for clarity. These contours form crescent-

. ) " , shaped wave fronts. The 0.5-kA/m contours are located at
1 e_kan<X_X )=ikzz=2'] ;
G.(r—t')= 2 (17) the edges of each crescent, and incremental contours of 1.0,
P 2|Dgn=—s Kn ' 1.5, and 2.0 kKA/m are counted towards the interior of each
crescent.
wherek,,=k,+2mn/D, andkzn:(\/kz—kin)* are the axial and This figure was taken at a time step when the center of the

bunch was ak=25 mm, which is just before the end of the

grating. This plot provides an intuitive understanding of the

SPR mechanism, in which the evanescent waves below the
®unch are being reflected by the periodic structure.

It is seen that the continuation of each crescent towards
rge anglesg— 90°, is tangent to the location of the bunch.
These crescents end at some angfe60° where the coher-
ent radiation is low due to the bunch length. The number of

transverse periodic wave numbers, respectively. Thele-
notes a complex conjugate value; thus,(lRg=0 and
Im(k,,) <0. Nonevanescent radiation propagating from th
grating will occur for real values ok,, These harmonics
correspond to the propagating Floquet harmonics which arg,
the spectral grating orders.

Thenth SPR order is obtained from Eq4.6) and(17) for

!
z=z, crescents, which corresponds to the number of wave fronts
JHyn(x,2, @) = 1 V XA TABLE Il. Smith-Purcell simulation parameters.
Mo
e TkxX=ikz? Bunch chargey 50 nC/m
= 2D f Je(r’, w)[- K, cosa’ Bunch relativistic factory 36
g Dg Height above the gratindyy, 0.6 mm
el ke Bunch lengtho, 200pum
+ inae']—dc’
kxrsina'] Ky dc’. (18) Grating periodDg 2.1 mm
Blaze anglex 10 degrees
It is noted that dividing this equation by the Floquet waveNumber of periodsN, 10
number dependenasik-ikz? results in an equation identi- Grig resolutionA,=A, 20 pm
cal to Eq.(29) in [3]. The nth-order radiated energy per Stability &2 0.5

groove per meter is found from E(L8) as
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@
]
=151

-
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e
3]

5 10 15 20 25
x [mm] 0

80 60 40 20 0 2 40 0
Propagating angle, 6 [deg]
FIG. 3. A contour plot ofH, by the bunch traveling above the
grating. Only positive contours of 0.5, 1.0, 1.5, and 2.0 kA/m are  FIG. 5. Diffracted wavelength of the first-order vs propagating
presented for clarity to form crescent-shaped wave fronts. Theangle calculated from the far-field transformati@olid line) com-
0.5-kA/m contours are at the crescent edges and the amplitude fared with the analytic result of E¢l) (dashed ling
increasing towards the interior of each crescent.

transform of the far-field data is maximum. The correspond-
ing wavelength versug is presented in Fig. 5 by the solid
line, where the theoretical value far1 is presented by the
dashed line.

diffracted from the grating, is equal to the number of
grooves. The wavelengthis related to the distance between
two adjacent wave fronts at a given andlelt is noted that
the computation area abowe>2 mm was not required for
the far field transformation, but was presented here for the

intuitive understanding of the SPR fields. _ B. EFIE solution
The grating was defined as a perfectly conducting metal
layer which is infinitely thin along the dimension. In Fig. 3, A plot of the absolute value of the surface current along

electromagnetic radiation is also observed below the grating"® ten-period grating is presented in Fig. 6. The surface
This radiation is generated by the part of the bunch wak&Urrent is normalized to a unit charge @1 C/m and a
which passes underneath the grating and gets diffracted RHnch form factor of(k)=1. The Fourier component is 285
the bottom of the grating. This radiation would not exist in GHz, which is related to SPR peaking st 30°. The surface
an experiment with a finite-thickness, single-sided grating. CUrrent structure has a 2.1-mm general periodicity, in agree-
The far-field radiation at an observation anglesef30° is ~ ment with the grating period, and an overall envelope which
presented in Fig. 4. A total of ten sinusoidal periods, correlS large in the first groove and decays towards the last
sponding to the ten grating periods, are seen in this figured'OOVe. o _
The temporal distance of 3.54 ps between two adjacent peaks 1he surface current for an infinitely long grating, solved
corresponds to a wavelength of 1.06 mm. This agrees witfr the normalization and frequency settings as in Fig. 6, is
the theoretical wavelength @=30° which is 1.05 mm. pres_ented in Fig. 7 by the solid line. The dashed line is the
The fundamental frequency at each observation angle waduivalent surface current for van den Berg's solufign.
computed by finding the frequency in which the Fourier

300
1_

200

100f 0.8
= E
o =
P 2
E 0 = 0.61
< ©
z, 2
> 100}
o 04

-200}

0.2
-300
_400 . . . . . . % 21 42 63 84 105 126 147 168 189 2t
0 10 20 30 40 50 60 x [mm]
t[ps]
FIG. 6. Surface current at spectral frequency of 285 GHz for the
FIG. 4. Far field radiation a#=30". ten-period grating.

016501-6



TIME- AND FREQUENCY-DOMAIN MODELS FOR SMITH-.. PHYSICAL REVIEW E 71, 016501(2009

0.35 . . : : : . : : . . 102
0.3f
0.25} =10’
£
E g
& o2 3
> $10°
0.15} o
o
Ny
3
Q
0.1 H H
o™k 1
i
0.05F P
)
Y
0 ) ! ! ! ! 1 ! ! ! ! o 1
0 02 04 06 08 1 12 14 16 18 2 10

-60 -40 -20 40 60

0 20
X [mm] Propagating angle, 6 [deg]

FIG. 7. Periodic surface current at spectral frequency of 285 |G, 9. Average first-order radiated energy per groove calcu-
GHz. The solid line is the periodic EFIE solution, and the dasheqgteq by the FDTD and EFIE methods in solid and dashed lines,
line is the solution of Eq(30) in [3]. respectively, and the first-order energy per groove for the infinitely

long grating solution in a dash-dotted lifean den Berg modgl
(30 in [3]]. Good agreement is obtained for the reflectedThe corresponding energy for a ten-period single-sided grating hav-
fields calculated from these two solutions. This periodic suring a 10 mm thickness is presented by the dotted line.
face current follows a similar structure per period as the ten-
period solution in Fig. 6; however, it differs in the maximum C. Radiated energy
amplitude value because it is the infinitely long grating so- The average first-ordén=1) radiated energy per groove
lution, whereas Fig. 6 presents the ten-period solution. In thiper meter by the FDTD and EFIE models is presented in Fig.
figure the surface current along one peri@dl mm) has four 9 by the solid and dashed lines, respectively. A good agree-
variations. This agrees with a wavelength of 1.05 mm whichment with an error of~10% is obtained between these meth-
corresponds to the above Fourier component. ods. The first-order radiated energy per groove per meter by

A contour plot of the SPR power spectrum for the param-van den Berg’s model, calculated at observation angle steps
eters in Table Il is presented in Fig. 8. The contour values aref 1°, is presented by the dash-dotted line.

0.5, 1, 2, and X 10**W &* (rad m™. For clarity, the inner The periodic solution deviates by a factor of more than 3
plot shows a zoomed-in section of the dashed box betweefiom the FDTD and EFIE solutions for the ten-period grat-
0° and 20°. The dashed curves are the finst1l) and second ing. Furthermore, the strong variations, related to Wood-
(n=2) orders of the Smith-Purcell resonance in EY. Itis  Rayleigh anomalie$26], are not seen in the finite-length
seen that the power spectrum is located along these linesplutions.
where most of it is at the first order. The spectral width at The effect of a finite-thickness grating is presented by the
each observation angle &w/w~ 1/nN,. dotted line. Here, the average first-order radiated energy per
groove is calculated by the EFIE model for a ten-period

0.8 single-sided gratingflat lower edge having a 10 mm thick-
ness. In Fig. 9 it is seen that a finite thickness grating hardly
071 019 affects the SPR for a wide range of angles —450<65°.
0.18 However, diffraction radiation from the left and right edges
08 17 is observed at +90¢not shown in this figure
Eo.s- 0.16 The convergence of the radiated energy per groove at
> 0.15 =25° for various extended grating lengtNg to that of the
o4 014 infinitely long grating(van den Berg modgl AE/E=(Eay
g —-E)/E, is plotted as circles on a log-linear scale in Fig. 10,
“oaf whereE is the energy per groove for the infinitely long grat-
ing. In this figure,AE/E=1 for a 50-groove gratingtotal
o2 length of 105 mmmeans it is 100% higher compared to van
ol den Berg’s solution, whereas it is only 6% higher for a 175-
N groove grating. The solid line represents the asymptotic con-

vergence and its slope was found to &€&,
The asymptotic convergence may be understood by the
FIG. 8. Power spectrum calculated by H41). The contour behavior of the surface current as the number of periods is
values are 0.5, 1, 2, and>x®1071° W s? (rad m~™. For clarity, the  increased. The amplitude of the current at Nt& groove,
inner plot shows a zoomed-in section of the dashed box between G¥here 1I<N<Nj, is found to be mainly affected by the cur-
and 20°. rent from the preceding grooveégrooves 1 toN-1). For
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frequency-domain solutions. For a large number of grooves,
this transient settles to the periodic solution. Figure 7 shows
o that assuming an infinite grating length, our periodic EFIE
solution agrees with the van den Berg model for the surface
current.

A good agreement for the radiated energy is obtained be-
tween the FDTD and EFIE models. It is shown that van den
Berg model results in a radiated energy per groove which is
o more than a factor of 3 lower than the average radiated en-

1 ergy per groove from the ten-period grating. This difference
is also seen by comparing the surface current amplitude of
the ten-period and the infinitely long grating in Figs. 6 and 7,
respectively. The cause of this difference is the transient ra-
" , , , , , , , , , diation from the initial to the successive grooves in the grat-
0 2 40 60 8 100 120 140 160 180 ing structure, as explained in the previous paragraph. Ex-

Number of Grooves, N K . . .
g tending the grating length by increasing the number of

FIG. 10. Convergence of the average energy per groove CalCLgrO(r)]ve_s r e.sullteld In anl e?(ponentlﬁl asy_mptptlc convergence
lated by the EFIE to that of the infinitely long gratifigan den Berg 0 th€ infinitely long solution, as shown in Fig. 10.
mode) at an observation anglé=25°. The circles denote the ratio 1 e edge effect due to a finite-thickness grating has a

AE/E and the solid line represents the asymptotic convergence. Slight contribution to the SPR for angles —~45%<65°, as
seen in Fig. 10. The left and right 10-mm edges result in

. . . coherent diffraction radiation at angles of £90°.
example, using the parameters of Fig. 6, the Fourier har- The Wood-Rayleigh anomalies, predicted by the van den
monic of the surface current at the first groove has a peaEerg model. have not been obs:erved to the best of our
value of ~1.0 As/m, independent dfly; the peak value at knowledge, in any SPR experiment. Only a mild structure in

the second groove is-0.9 As/m forNy=2, etc. The solu- . . . Nt .
tion of the surface current for a large number of periodsthe radiated spectrum is predicted by our finite-length grating

(Ny>100 follows an envelope where the amplitude ap- calculation.

. . It will be interesting to study how the SPR is affected by
fﬁg?;gf;rgh:\,gsemd'c solution valuep.27 As/m, towards  , ejjistic conductivity grating. Based on RE27], we ex-

pect the same behavior for wavelengths longer thaomi
and a significant reduction in the radiated energy for wave-
V. DISCUSSION lengths shorter than m.

A theoretical study of SPR by a 2D bunch above a finite- 1S paper extends the FDTD applications by computing
length grating was presented using two models. In the timethe Q|ﬁract|on of th_e freespgce wgke by the metal_hc grating.
domain model, a TF/SF approach was used to simulate thit Might be convenient for simulating complex grating geom-
bunch wake. The far-field signal in Fig. 4 follows an enve-€tfiés such as photonic band-gap structui28-3g and
lope which falls by a factor of 2 from the first to the last could be used, for example, to optimize the maximum energy
period. The same behavior is noted for the surface current & & desired wavelength. Both models are limited by com-
the same spectral frequency shown in Fig. 6. puter resources and_requwed 2-3 days of computation t!me

The change in the surface current envelope is explainen & 2.65 GHz Pentium processor for the above numerical
by the cumulative effects of the diffracted fields in the for- €xample.
ward (positive x) direction. The surface current induced on
the first groove, as the bunch passes above it, generates the
first period of the SPR. The forward-directed part of this
radiation induces current on the second groove just as the This research was supported by the U.S. Department of
bunch is located above the second grodfar relativistic ~ Energy, Division of High Energy Physics. A.S.K. wishes to
velocitieg, thus changing the amount of radiation from this thank Eric A. Forgy and Arthur D. Yaghjian for their helpful
groove. This behavior is seen in both the time- andsuggestions.

-
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Energy Difference, AE/E
o
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